Learning in Computer Vision

Posted in Science on July 27, 2008

Learning in Computer Vision

This tutorial he will cover some of the core fundamentals in vision and demonstrate how they can be interpreted in terms of machine learning fundamentals. Unbeknownst to most researchers in the field of machine learning, the fundamentals of object registration and tracking such as optical flow, interest descriptors (e.g., SIFT), segmentation and correlation filters are inherently related to the learning topics of regression, regularization, graphical models, generative models and discriminative models. As a result many aspects of vision can be interpreted as applied forms of learning. From this discussion on fundamentals we shall also explore advanced topics in object registration and tracking such as non-rigid object alignment/ tracking and non-rigid structure from motion and how the application of machine learning is continuing to improve these technologies.

Author: Simon Lucey, Carnegie Mellon University

Watch Video

Tags: Science, Lectures, Computer Science, VideoLectures.Net, Computer Vision