Learning from Interpretations: A Rooted Kernel for Ordered Hypergraphs

Posted in Science on August 06, 2008


Learning from Interpretations: A Rooted Kernel for Ordered Hypergraphs

The paper presents a kernel for learning from ordered hypergraphs, a formalization that captures relational data as used in Inductive Logic Programming (ILP). The kernel generalizes previous approaches to graph kernels in calculating similarity based on walks in the hypergraph. Experiments on challenging chemical datasets demonstrate that the kernel outperforms existing ILP methods, and is competitive with state-of-the-art graph kernels. The experiments also demonstrate that the encoding of graph data can affect performance dramatically, a fact that can be useful beyond kernel methods.

Author: Gabriel Wachman, Tufts University

Watch Video

Tags: Science, Lectures, Computer Science, Machine Learning, VideoLectures.Net, Kernel Methods