Exploration - Exploitation for Statistical Software Testing

Posted in Science on August 26, 2008


Exploration - Exploitation for Statistical Software Testing

Lecture slides:

  • Exploration / Exploitation Inference for Statistical Software Testing
  • Overview pt 1
  • Software Testing
  • Software Testing, Classification
  • Correctness Testing
  • Criteria
  • Hybrid Statistical/Structural Approach
  • Example
  • Hybrid Statistical/Structural Approach 1
  • Hybrid Statistical/Structural Approach, 2
  • Uniform sampling of bounded program paths
  • Hybrid Statistical/Structural Approach, 3
  • Discussion
  • Domain knowledge and search space
  • 1st: Discriminant/Active learning
  • 2nd: Generative learning
  • Position of the problem
  • Domain knowledge and search space 1
  • Representation: Parikh map
  • Distribution search space
  • EXIST : Exploitation / Exploration Inference for Statistical Testing
  • Selection Module
  • Update Module
  • Initialisation Module
  • Seeded Initialization
  • Initalisation Module 1
  • Seeded Initalization 1
  • Seeded Initialisation, 2
  • Summary of EXIST
  • Experimental Validation
  • Experimental setting and goal
  • Category I
  • Category II
  • Category III
  • Problem art5
  • Discussion
  • Related Works
  • Overview pt 2
  • ML for Computer Science
  • Evolution of Computing
  • A case study (upcoming EGEE-Pascal Challenge)
  • Goal: Grid modelling
  • Modelling the grid: an ML problem
  • Call to Arms

Author: Michele Sebag, University Of Paris Sud

Watch Video

Tags: Science, Lectures, Computer Science, Machine Learning, VideoLectures.Net